Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm

نویسندگان

  • William J. J. Roberts
  • Sadaoki Furui
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...

متن کامل

Estimation of 2- and 3-parameter Burr Type XII distributions using EM algorithm

The Burr Type XII distribution is one of the systems of continuous distributions and is widely known because the distribution includes the characteristics of various well known distributions such as Weibull and gamma distributions. Maximum likelihood estimation (MLE) has been a common method in estimating model parameters. An alternative method that is the expectation-maximization (EM) algorith...

متن کامل

Maximum Likelihood Source Localization Using the Em Algorithm to Incorporate Prior Parameter Distributions

In this paper we introduce a new algorithm for the estimation of source location parameters from array data given prior distributions on unknown nuisance source signal parameters. The conditional maximum-likelihood (CML) formulation is employed, and ML estimation is obtained by marginalizing over the nuisance parameters. In general, direct solution of this marginalization ML problem is intracta...

متن کامل

Maximum Likelihood Parameter Estimation

The problem of estimating the parameters for continuous-time partially observed systems is discussed. New exact lters for obtaining Maximum Likelihood (ML) parameter estimates via the Expectation Maximization algorithm are derived. The methodology exploits relations between incomplete and complete data likelihood and gradient of likelihood functions, which are derived using Girsanov's measure t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2000